A two-dimensional model of a directional microphone:

Calculation of the normal force and moment on the diaphragm
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It has been shown that the parasitoid fly Ormia Ochracea exhibits exceptional sound localization
ability achieved through the mechanical coupling of its eardrums [R. N. Miles et al., J. Acoust. Soc.
Am. 98, 3059-3070 (1995)]. Based on this biological system a new directional microphone has
been designed, having as a basic element a special diaphragm undergoing a rocking motion. This
paper considers a 2D model of the microphone in which the diaphragm is considered as a 2D plate
having slits on the sides. The slits lead to a backing volume limited by an infinite rigid wall parallel
to the diaphragm in its neutral position. The reflection and diffraction of an incoming plane wave by
this system are studied to determine the resultant force and resultant moment of pressure upon the
diaphragm. The results show that such a microphone will be driven better in the case of narrow slits

and deep cavities. © 2006 Acoustical Society of America. [DOI: 10.1121/1.2149838]

PACS number(s): 43.20.E1 [MO]

I. INTRODUCTION

The analysis of the auditory system of the parasitoid fly
Ormia Ochracea revealed a remarkable ability to detect the
direction of the incoming sound despite the very small dis-
tance between auditory organs.1 It was determined the fly has
a special structure of the auditory system consisting of two
closely spaced eardrums with a semirigid bridge connecting
them. The mechanical connection between the ears causes
them to move in opposite directions in response to the dif-
ference in pressure on their exterior surfaces.

Inspired by this biological system and taking advantage
of modern MEMS technology Miles ez al.,>? proposed a new
directional microphone integrated on a very small area. The
device consists of a polysilicon diaphragm and a backplate to
enable capacitive sensing of the diaphragm’s motion. The
diaphragm is designed to respond like a rigid plate that rocks
about a central hinge. Pressure gradients on its exterior result
in a net moment about the hinge and cause it to rotate. This
rotation is similar to the out-of-phase motions observed in
the acoustic response of the fly’s ears.

In this paper we consider a simplified 2D model of the
acoustic forces on this directional microphone for obtaining
information concerning the parameters necessary for design
purposes. In Sec. II the geometry of the model is presented,
along with the corresponding PDE and the boundary condi-
tions. Thus, the line A'A in Fig. 1(b), is a plane section of the
diaphragm in Fig. 1(a), undergoing a rocking motion around
the axis Oy. The half-infinite lines D'B’ and BD are immo-
bile parts and the segment E'E corresponds to the micro-
phones’ backplate. The working domain consists of the upper
half-plane D*={z>0}, the strip D" ={-h<z<0} and the
connecting slits S={z=0;a<|x|]<b}. Also, due to the
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plane-parallel geometry of the domain it is possible to reduce
the boundary-value problem (BVP) to a 2D PDE even in the
case of a general (plane) incoming wave. After considering
this geometrical model of the problem the approach involved
is that of general linear acoustics. References for these prob-
lems can be found in the classical book by Morse and
Ingard4 (also see Ref. 5). Also, most of the traditional and
modern results are collected in the excellent book by Mechel
et al.® The treatment in this paper is mostly analytical. How-
ever, for obtaining some results for the analyzed structure in
the end some numerical computations are required.7

In Sec. III some representation formulas for pressure in
the two domains D*, D~ are obtained. Next, a Fourier trans-
form with respect to the x-variable was considered and the
boundary conditions on the hard surfaces and the condition
at infinity were applied. For the acoustical domain of fre-
quencies that we are interested in, the solution consists of a
propagating mode and an infinite number of evanescent
modes. By imposing the connecting conditions along the slits
S the results of the basic equation of the problem (Sec. IV)
can be written as an integral equation. A uniqueness theorem
is proven to the solution to this integral equation. Afterwards,
the solution is decomposed into an odd and an even part,
each of them satisfying a different integral equation. The
main part of the kernels of these equations are separated and
the regular parts are written in a form suitable to numerical
computation. In Sec. V the two integral equations (corre-
sponding to the odd and even parts of the solution) are re-
duced to two infinite systems of linear equations. This is
achieved by using the spectral relationships for the two op-
erators corresponding to the main parts of the kernels. Since
the assumed form for the solution takes into consideration
the proper behavior of the solution at the points +a and b,
namely square-root singularities, the resulting infinite sys-
tems of linear equations have good convergence properties.
Formulas are given for computing the resultant force and the
resultant moment acting upon the diaphragm in terms of so-
lutions of the infinite systems.
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FIG. 1. (a) A sketch of the directional microphone. (b)

(@) :
/ The 2D model of the directional microphone.
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A numerical analysis of the infinite linear systems is
given in Sec. VI It is based on some properties of elliptical
functions, a Gauss-Legendre integration formula, and re-
peated use of the discrete cosine Fourier transform (DCFT).
Finally, Sec. VII contains some numerical results. The graph
in Fig. 4 gives the total moment of pressure as a function of
the slit’s width and the microphone’s depth. In Figs. 5 and 6
is plotted the force’s amplitude and phase delay as a function
of the same parameters for a particular value of frequency.
The dependence of the moment and force amplitude with
frequency is plotted in Figs. 7 and 8.

The conclusion is that a directional microphone built on
the ideas in Refs. 1 and 2 is driven better for very small
width of the slits and quite deep back-chambers as compared
with the diaphragms’ width.

Il. FORMULATION OF THE PROBLEM
A. The geometry of the model

In order to study the influence of reflection and diffrac-
tion of pressure waves by the edges of the diaphragm, on the
diaphragm resultant force, and resultant moment we consider
the model in Fig. 1. Thus, we assume a plane-parallel geom-
etry in the direction of the Oy-axis. The segment AA’ corre-
sponds to the microphone diaphragm, AB and B'A’ are the
two slits, and EE' is the bottom wall of the die. The origin of
the Cartesian system of coordinates has been chosen at the
center of the plane-parallel diaphragm and Oz axis on the
upward normal direction to the diaphragm plane. We denote
also by D* the upper domain (the half-plane z>0) and by
D the strip —h<<z<<0 in the lower half plane. The domain
we have to study the motion of the acoustic waves is D
=Dt*UD US, where S=B’'A"UAB.

J. Acoust. Soc. Am., Vol. 119, No. 2, February 2006

B. The PDE of the problem

In the case of a harmonic motion with respect to time (of
w-angular velocity) we write the perturbation of the pressure
p’ as

pr =pm(x’y’z)e—imt.

In this case the scalar wave equation for the pressure be-
comes

#p., .\ #p.,

. #p, o
)

(922 +gpw=07 (1)

which is the well known Helmholtz’s equation. Here, ¢ is

- the unperturbed isentropic velocity of the sound.

C. Boundary conditions and condition at infinity

All of the walls are considered to be hard surfaces. Con-
sequently, the normal velocity along the walls will be zero
and the following, Neumann-type boundary condition, valid
along all of these surfaces, is obtained

Py
2=y, 2
on @

n designates the direction of the normal to the surface.

Concerning the condition at infinity, the system is as-
sumed to be under the action of an incoming plane wave
described by the incident-wave direction given by angles 6,
¢; of Fig. 2. Thus we have

i_l Lo . .
Po=7 eXpy iz [x sin 6; cos @; + y sin 6; sin ; —z cos 8] .
0
(3)

In the case that the domain is D" and the boundary is the
whole hard plane z=0, it can be checked directly that the
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FIG. 2. The incoming and the re-
flected plane waves.

solution of the problem can be written by adding to pfu, the
reflected wave in the form

o | W . .
Pu™35 exp z-c—[x sin 6; cos ¢; + y sin 6, sin ¢; — z cos 6;]
0

1 @ .
+3 exp{i—[x sin 6, cos @; + y sin §; sin ¢; + z cos 6;] [ .

Co
4)

This formula will be taken as the expression of the solution
at infinity (for z— ).

In addition, the Sommerfeld Radiation Condition is im-
posed, so that all of the other propagating perturbations de-
scribe outgoing waves.

D. The reduced (2D) PDE

Due to the special geometry of the problem and special
form of the condition at infinity, the unknown function
Polx,y,2) shall be written in the form*

)
DolX,¥,2) =p(x,z)exp{i;—y sin 6§, sin gol}. (5)
0

The new unknown function p(x,z) satisfies the 2D Helm-
holtz equation

&Fp &p
— +— +kp=0, 6
PR R (®)
where the reduced wave number &, has the expression
wy
k% = = _2(1 - Sil’l2 6,‘ Sin2 ¢l) (7)
€

The solution p° can also be written as

1
PPxz) = 5 expliko[x sin 6, — z cos 6,1}

1
+3 explikolx sin 6 + z cos 6pJ}, (8)
‘where

. w .
kg sin g = — sin 6; cos ¢;,
Co
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kocos 6= 62 cos 6;. 9)
0

lll. REPRESENTATION FORMULAS

In order to obtain some representation formulas for the
function p(x,z) we write

p(x,2) = p®(x,z) + p*(x,2), in D%,

plx,z)=p(x,z), inD. (10)

Both functions p*(x,z), p~(x.z) are solutions of the 2D
Helmholtz equation (1), satisfying the homogeneous Neu-
mann condition dp/dz=0 along the walls; on the two slits we
can write

po(x’o) +p+(x70) =p_(x90)’ forxeS= (_ bs__a) U (a’b)7

Ip*(x,0)/dz = p~(x,0)/9z = f(x), forx e (-, +=), (11)

where f(x) vanishes outside the slits and is an unknown func-
tion for x e S=(-b,—a)U{a,b). In fact, as all the represen-
tation formulas will involve this function, it will be the main
unknown function of the problem. This way, the unknown
scattered pressures over the open slits are affected directly
only by the field arriving from the other parts of the com-
pound diffractor.

A. The solution of the 2D Helmholtz equation in D*

For determining an expression for the function p*(x,z
we consider a Fourier transform with respect to x,

PHa,z) = f pH(x,z)edx.

Equation (1) yields the differential equation
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dZ + g
% —(? - k)P (a,2) =0. (12)

he solution of this equation, which is vanishing at infinity
upward, can be written as

Pa,z)=- rexp{ va? - koz} (13)

The Fourier transform of the function f(x) is denoted by
F(a). Now the function p*(x,z) can be written by using the
convolution theorem

pH(x,2) =—f FEK (x—x",z)dx’, (14)

where

K*(x.2) 1 [ 1
X,z2) = ——
¢ 27T Y a2 - k(z)
- éH(I)(kO\/xZ +2). (15)

Here Hé:Joﬂ'Yo is the Hankel function of the first kind of
order zero.

expl— Vo - k(z)z}ei“xda

B. The solution of the Helmholtz equation in D-

The solution of Eq. (12) satisfying the homogeneous
Neumann boundary condition along the bottom surface and
the second condition (11) along the surface z=0 can be writ-
ten as

F(a) cosh[vyd? -~ k(z)(z + h)]

P (a,z) = (16)
Vo2 — k% sinh[Vo? - k2]
Hence, the representation formula in D~ is obtained
400
px=-| f&HK(x-x"z)dx', (17)
where
K(r.2) 1 f cosh[Va? - k3(z + h)]
X,7)=—
27 o aP - K sinh[Va? - kZh]
(18)
This function can also be written as
L[ cosh[‘\/az—tﬁ<l+%>}
K (x,2)=—
o Ve - I sinh[Va? - 2]
x
Xexp{ia;}da, (19)
where
fo=koh = —2h.
o

The inverse Fourier transform in (19) cannot be per-
formed in finite form. However, the residue theorem can be
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FIG. 3. The integration path T'.

applied in order to evaluate this integral. There are in this
case some real poles which describe undamped waves, cor-
responding to resonance frequencies, and also some imagi-
nary poles which give evanescent modes. The Sommerfeld
condition requires that only the real positive poles which are
providing outgoing waves have to be considered. Hence the
integration contour will be that drawn in Fig. 3. A simple
discussion about the application of the Fourier transform for
solving the wave equation can be found in Ref. 5, pp. 293-
295.

To be specific, for the range of parameters of this par-
ticular problem (w<2-20 kHz) the first pole at the point
a;=to(t;>0) is real. The next one, a,= "V t%— a2, is imaginary
as well as all the other poles. Consequently the function
K~ (x,y) can be written as

cos[mr(l +z/h)

X exp{— \/—Tlxl } (20)

toh

n= S 5

Now, once the function f(x) is determined, the formulas
(14) and (17) can be used for obtaining the pressure field in
any point of the domain D.

Remark 1: In the case that the working frequency o is
increasing, the poles on the upper imaginary axis are moving
toward the real positive semiaxis providing more propagat-
ing modes corresponding to different resonance frequencies.
Hence, the method developed in this paper can be applied to
all (finite) working frequencies if the supplementary propa-
gating modes are taken into consideration.

IV. THE BASIC EQUATION

For obtaining the equation to determine the function
f(x), the representation formulas (17) and (20) could be used.
Since the formula corresponding to the domain D~ involves
an infinite series it is preferable to work with closed expres-
sions in the Fourier transform plane. Then, the first condition
(11) yields the basic equation in the form

PAD)f(x)=g(x), xeS,
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fx)=0, xeR-S, (21)
where
g(x) = exp{ikyx sin 6y}.

Here Pj is the restriction operator to the reunion of intervals
S, and A(D) is a pseudodifferential operator with the symbol

Ale) 1 cosh aZ—t%+ 1
&)= 7 .
V- 2siohVo? -2 VP —13

The pseudodifferential operator acts on the function f(x) as
1 x
AD)f(x)= —‘f A(a)F(a)eXp{ia—}da.
2mlr h

The contour ', symmetrical with respect to origin, is shown
in Fig. 3.

Thus, for the function f(x) the pseudodifferential equa-
tion (21) is obtained. The contour I" assures that the solution
satisfies Sommerfeld’s condition at infinity.

Alternatively, the basic equation can be written as the
integral equation

ff(x')K(x—x’)dx’ =g(x), xeS=(-b,—a)U (ab),
s

(22)
where the kernel K is
K(x)=—l—j { 1 coshm
27 | VoP £ sinh Vo - 2
1 X
+ \/az_tg:lexp{za;}da. (23)

A. The uniqueness theorem

1t shall be proven that the basic equation has at most one
solution. Indeed, the homogeneous equation [corresponding
to g(x)=0] can be written as

f FfxNKx=-x")dx' =0, xe8.
s

Muitiplying by ﬁ;)- (the overbar denotes the complex conju-
gate function) and integrating along S there results

J’ f K(x —x’)f(x')}‘@dx’dx =0,

the integral being taken over the whole Oxx’-plane. By sub-
stituting the expression (23) of the kernel there results

f 1 coshVe?® -1 1

+
r V@—tgsinh \/Zz—t(z) \[az—tg
Using the residue theorem, in the form valid for the case the

contour remains along the real axis, the following expression
is obtained:

F(a)F(@)da=0.
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fm 1 cosh az-—tg‘F( \Pd +f
a [24 7
o« Va? - £ sinh Vo2 - A

0 |F(a)? P )2+ ]F(to)lz} N

+1 —da+
{ =t Vl%‘a’z ’ 2t0

The imaginary part in this relation gives

Fltg) = F(=1) =0,

+g lF(af)|2

—===da=0.
~tg Vl‘(z)- &

The last relationship yields F(a)=0 almost everywhere in
the interval (—¢y,%,). As the Fourier transform of a summable
function over a finite interval is analytic in the whole plane
there results F(a)=0 all over; its inverse Fourier transform
f(x) is also vanishing along the whole real axis. We in fact
have proved the uniqueness theorem.

Theorem 2: Equation (22) has at most a solution in the
space of g-summable functions L,, (1<g<2).

B. Odd and even solutions of the basic equation

The symmetry of the integration intervals with respect to
the origin makes it possible to write particular integral equa-
tions for the odd and even part of the solution. It is evident
from formula (23) that K{x)=K(~x) which is in fact a physi-
cal embodiment of reciprocity. Consequently, the kernel is a
function of |x| that will be denoted also by K(|x|). We intro-
duce now the odd and even part of the solutions of the basic
integral equation by

folx)=0.5[f(x) ~ f(=x)],
fo(x) = 0.5[f(x) + f(-x)],

or, equivalently,

&) =folx) + (%),
f(_x) :fe(x) —fo(x)-
Hence, Eq. (22) gives
b b
f K(Px—x"fuolx") + fola) dx’ +f K(jx +x'f(x")

—folx)]dx' =g(x), x e (a.b), (24)

b b
f K(le’l)[fe(X’)+fo(x’)]dX’+f K(x—x'DIfex")

~f(x")]dx' =g(-x), xe(ab). 25%)

Now, from the sum and the difference of Egs. (24) and (25)
we obtain

b
f K(")(x,X’)fo(X’)=§go(X'), xe(ab), - (26)

Homentcovschi, Aubrey, and Miles: A model! of a directional microphone



b
f K(e)(x,x’)fe(x')zgge(x’), x e (a,b). 27)

These are two independent equations for determining the
functions f,(x), f.(x). We have denoted

KO%x,x") = g[K(Ix—x’l) —K(x+x'])],

KO(x.x') = ZZ-T[K(Ix—x'D +K(x+x'])],

8o(x) = 0.5[g(x) — g(— x)] = i sin(kyx sin 6),

8.(x) = 0.5[g(x) + g(- x)] = cos(kgx sin 6p).

C. Analysis of the of integral equation kernels

An analysis of the kernels of the integral equations shall
now be produced. Thus, the main (singular) part of the ker-
nel, which determines the behavior (singularity) of the solu-
tion at the intervals ends, will be separated. Also, the kernel
will be written in a form directly amenable to efficient nu-
merical methods.

Thus,

é 1

1 kx i
K'(x)= ;fr \/kz———k—%dk= - ZYO(kolxD + Efo(kolxD,

1 coth V&2 - 1§ itk

K(x)= E ; W‘e dt

1 [**{ coth ioVr*— 1 1 "
=— - e o™ dy
27} \/tz— 1 l‘o(l‘2 -1
4L ikl

21,

Hence,

~x' 1 2 i k, H ’
K(")(x,x’)—_-._ln |x_x] +_f sin{kgxt)sin(kgx't)

0 £-1

x+x" gy

+ ;—Z sin(kox)sin(kox’) — g

0 Vi-2
+lf{°°th(’°m)_ 1 1 }

1 VP -1 o -1) JA-1
1 J ” | coth(tpV = 1) 1 }

X cos(kotx)drt + g i N - Ny

1 (7 cos(kt k
Xcos(kotx)dt + — cos(kotx) dt+ icos( olx])
mtglo -1 2t,

1 I
K(x)= i f {l‘o (11_ 2~ cotlioVl — 1) }cos(kotx)dt

ks

1
- Eyo(ko|x|),

the last integral is being considered as a Cauchy principal-
value integral. In obtaining this formula we have used also
the integral

* cos(kyt.
. _t2£—-01_X)dt= - g sin(k|x|),

which can be found in Ref. 8.
We have

K(x) = K*(x) + K(x),

and hence, by some changes of variables

1 7T/2 1
K(x)=— f { — — cot(t, sin u)}cos(kox cos u)du
tsin u

mTJo

1 (¢ _ 1
+— coth(zy sinh 1) — — -1
mJo Zo sinh u

1 o0
X cos(kgx cosh u)du + — f {coth(#, sinh u) — 1}
TS g

1 {2 cos(kyxt
X cos(kgx cosh u)du + — —-—COS( o)
7Tt0 0 tz—l

dt

cos(kolx))
bl —
21,

where d=cosh™1(2).
Finally the kernel of Eqgs. (26) and (27) can be written as

— Yo(kolx]) + éfo(kolxl),

i
dt + Z{Jo(kolx —x'[) = Jolkolx + x'|)}

, w2 |x=x]
{Yo(kolx—x ) = Yolkolx +x']) — . In —}

x+x

2
1
+ J { — — cot(?y sin u)}sin(kox cos u)sin(kyx’ cos u)du
0 tO Sin u

d
+f {coth(to sinh u) —

0 tysinhu

- l}sin(kox cosh u)sin(kyx’ cosh u)du

+ f {coth(z, sinh u) — 1}sin(kox cosh u)sin(kgx' cosh u)du,
d
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cos(koxt)cos(kox t)
2_

K9%x.x") =—Inlx?* - x'Y + tf
0J0

+ — cos(k(}x)cos(kox )-—
2ty

J“rr/?. 1
+ -
0 to Sin u

d
+ f {coth(to sinh u) —

0 to sinh u

dt + %{Jo(ko[x _x]) + otk + 5D}
{Yo(kolx X ]) + Yo(k0|x +Xx |) _—— Inlx -— x’zl}
— cot(z, sin u)}cos(kox cos u)cos(kox’ cos u)du

- l}cos(kox cosh u)cos(kgx’ cosh u)du

+ f {coth(%, sinh u) — 1}cos(kox cosh u)cos(kex’ cosh u)du.
d

The first term on the rhs proves that the integral equation has
a logarithmic singularity. The first integral is a Cauchy
principal-value integral and all the other terms are regular, or

regular integrals.
Finally, Eqgs. (26) and (27) will be written in the form

b x—x|
— ! 1
L fo(x")In .

x € (a,b),

b
dx'+ j Fx KO (x,x)dx" = gga(X),

(28)

b b
—J. fe(x')ln|x—x’2]dx’ + f fo(x’)[?(e)(x,x’)dx' = gge(x),

x e (a,b), 29)

separating the main (singular) terms,

= x—x'
K9(x,x") = K9(x,x") +1n | ,I ,
X+x

KO%,x") = K®(x,x") + In]x® - x"?.

V. REDUCTION OF THE INTEGRAL EQUATIONS TO
INFINITE SYSTEMS OF LINEAR EQUATIONS

A. The spectral relationships for logarithmic operators
and the spaces L}?(a,b),L}?(a, b)

For approaching the integral equations (28) and (29) the
spectral relationships that invert the main (singular) part of
the kernels of the integral equations will be used. For the
“odd” case this spectral relationship was given by Aleksan-
drov et al. in Ref. 9,

T.(X;)

b
"fa Vo7 -5 - )
n=0, (30)

bx - x | (")T %),

x+x'

where
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fo )

K'(c) nwK(c)
nb K'(c)’

¥ 77
=cos
i K'(c)

v
= K. p =

n=1,

1-¢%, K =K'(c)=K('). (31)

- ﬂ
b
T,(X,)=cos(n arccos X,) denotes the Chebyshev polynomi-
als of the first kind. F is the elliptic integral of the first kind
and by K(c) denotes the complete elliptical integral of the
first kind.

Relation (30) yields the formula

_ F fb T,(X,) Tn(X,)
o Ja NP =22 = NB? - D)2 - a)
L P b T(X)TW(X,)
el N O

Due to the symmetry of the first term in this expression with
respect to x and x’ we can write

P LEITX) o DX Th(X)
e NP2 -a?) ) NP - - )
As ,uflo) # ,ufrf) there results the orthogonality relationship
0 forn#Fm
dx=1K'(c)/(2b), forn=m#0
K'(¢c)/b, forn=m=0.

(0)

b T(X)T,(X,)

- W=D -a?)

Inspired by this formula the inner product

bAX)eX,) .
o V=D~ D)

(fx).8(x))o=

is defined and, correspondingly, the norm
ok [ =Lt
AR

- ~d?)
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We denote by L}?(a,b) the completion of the space of
continuous functions on (a,b) in this norm. It is obvious that
Lé’oz(a,b) is a Hilbert space. In this space the set of functions
T,(X,) is an orthogonal complete system.

A similar analysis can be made for the main (singular)
part of the “even” equation. In this case the spectral relation-
ship is

j 2x'T,(X))
\/(b2 12)(x/2

1 2 - x"?dx’' = uOT,(X,),

n=0,
where
2 b*+a
Xe=b2_a2{x2— 2 :|’
ar
Mge)zwlnbz 7 /_LE:—’):;, n=1

The orthogonality relationship
0 forn #m
72, forn=m+#0

m, forn=m=0

P T (X)T,(X,)

NPT

can be proven and also the “even” inner product

2 (X)eX)
o VB2 =) (2 - )
may be defined along with the corresponding norm

b 2

2x|f(X.)|
I = ———dx

o N2 =) - @)
We denote by LY (a b) the completion of the space of con-
tinuous functlons on [a,b] in the LY*(a,b) norm. The set of

polynomials 7,{(X,) is an orthogonal complete system in this
Hilbert space.

{(fx).8(x)). =

B. The infinite system of linear equations equivalent
to the “odd” integral equation

According to the theory developed in previous section
the solution of the integral equation (28) can be written in the
form

2 AVTX,)
VB =) -a?)

where the coefficients A;(f) have to be determined. Equation
(28) becomes

(32)

folx) =

bt (X')I?(")(x,x’)dx’
\/(bz /2)(x/2_a2)

E w AT (X,) + 2 Ay

T

= Ego(x). (33)
In order to obtain a system of linear equations for unknown
coefficients A, consider the inner product with T,,(X,). [The

spectral postmultiplication of the integral equation with the
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function 7,(X,) is somewhat arbitrary since one cannot hope
to achieve a spectral diagonal (perfect separability). Rather
one hopes that the Chebyshev polynomial function in ques-
tion will strengthen the diagonal of the resulting spectral
system of equations.] The relationship (33) becomes

5(0)2 (o)A(0)+ E K(O,)tA(o)“g(O),m 0,1,2, . (34)
where
5002 K'(c)/(2b), form #0
™ | K'(c)/b form=0,
70 _ f ’ f P TWX)T(X)Kx,x")dxdx’
= \/(bz_xz)(xz_az)\/f(bz_xfz)(xlz_az),
(35)
O P _Tu(X,)e,(x)dx 6

a VB -2 -a?)’

The way the infinite linear system was obtained (34)
shows that the system is equivalent to the integral equation
(28). Since the linear system comes directly from the integral
equation the proof of uniqueness also applies to the linear
system. That is the infinite linear system always has an
unique solution.

Remark 3: The conversion of the relationship (33) into a
linear system (34) is equivalent to a Galerkin formulation.
Alternatively, a collocation method can be used by imposing
Egq. (33) to be satisfied at a special set of points. In this case
the Galerkin procedure is preferred due to its connection
with the above defined inner products.

C. The infinite system of linear equations equivalent
to the “even” integral equation

The solution of the integral equation (29) shall be writ-
ten in the form

w2 AYT(X,)
V(B? -2 -a?)

where the coefficients Aff) have to be determined from the
integral equation. We obtain

Jelx) = (37)

b ox'T (X)) K(x,x")dx'

/2)(x12_ a2)

E ”(e)A(e)T (X,) + E A(e)
n=0 ¢ \/(b2

= 8. (38)

The “even” inner product with 7,,(X,) yields the infinite sys-
tem of linear equations

204 4 2 ROA@ Z g

m k4
n=0

m=0,1,2,..., {39)

where

Homentcovschi, Aubrey, and Miles: A model of a directional microphone 763



m

6(6)2={7T/2, form+#0

7, form=0.

K = f ’ fb 4xx’Tm(Xe)Tn(Xé)I?(e)(x,x’)dxdx’
B Vo - D) - N -2 D - aD)
(40)

b oxT, (X8 (x)dx
o VP =D ~a)

(41)

D. The forces due to fluid pressure upon the
diaphragm

In order to obtain the resultant force and the resultant
moment of pressure upon the diaphragm consider the rela-
tionships

pum0) = f K-,
S

pofx, +0) = p°(x,0) - f FEK(x—x'])dx’,
s

giving the pressure on two faces of the diaphragm in terms of
the function f(x). Hence

Puld— 0) = P, +0) =~ p°(x,0) + J FE(x = x')dx’.
N

By introducing the odd and even parts of the function f we
can write this relationship in the form

pm(x’_ 0) “pw(x’ + 0) = ._po(x70)

2 b
+ —f Fo K Lxx")dx'
m™ a

2t .
+—f F(x K (x,x")dx".
T a
Hence,

_ J‘ a [Pw(x’_ 0) "pw(‘x’ + O)]dx

a

+a o) +a b
= J P2(x,0)dx + — f dx f F£GNK (x,x")dx'
-a TJ g

M= fﬁ x{p,(x,~0) — p(x, + 0)]dx

+a
=—f xp°(x,0)dx + — J xdxf f(x" K, (x,x")dx" .
By using the expressions (32) and (37) of the two functions
fo:f. We obtain

sin{akg sin by) -
F=op——0 0 . 3 AR 42
kg sin 6, mE:O mem (“42)
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_cos(akg sin 6y)

sin(akg sin 6,
M =2ai __E__u

+ 2 AIM,,

ko sin 00 (ko sin 00)2 m=0
(43)
where
4 (P22 TXDK ) x,x")dx’
- f dxf \/(bz_x&)(xrz_ (12) ’ (44)
4 @ b Tn(X;)K(”)(x,x’)dx’
- 'Tff dej; \/(bZ_XIZ)(xIZ_a2) ) (45)

Remark 4: We note that due to 2D model considered in
this paper the pressure does not depend upon the y-variable.
Correspondingly, the total normal force and moment on the
diaphragm can be obtained by multiplying the quantities F
and M [given by formulas (42) and (43)] by L,, the dia-
phragm’s width.

Vi. NUMERICAL ANALYSIS OF THE LINEAR
SYSTEMS

For both the “odd” and “even” cases an infinite system
of linear equations for solving the problem was obtained.
However, the coefficients of these systems cannot be evalu-
ated analytically, hence they must be computed by numerical
methods.

A. The “odd” case

To begin consider the problem of computation of gener-
alized Fourier coefficients of a given continuous function
with respect to the orthogonal bases {T,,(X,)} in the Hilbert
space L)%(a,b). For example,

gy = —<go<x> T(X,))-
Let h(x) be a smooth function defined on the interval
(a,b). Then,
b h(x)T (X,)dx
NP =) -adb)

By inverting the relationship (31) the following expression
for x can be written:

x= \/b2 - (p? - az)snzl -I-g arccos(Xo)J , (46)

(h(x), Tp(Xo))o =

where sn is the Jacobian elliptic function and,
X, =cos 0. (47)

By means of the changes of variables (46) and (47) there
results

b p()T(X,)dx
o N2 =) (- a?)

KI m Kf
= — h< \ﬂ)z — (- a2)5n2<—— 6> )cos(m&)d(}.
7hJg T

(48)
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By using the relationship8
sn(u+2K’,c")=-sn(u,c’),

we can write

K’ K’
n2[—(0+ 277),0’1' = sn2<—0+ 2K’,c’)
T

Hence, the function

= h( \/bz— (bz—az)sn2(§ ))

is a smooth, even, 2m-periodic function. The generalized
Fourier coefficient can be written as

’

1O = (h(x), To(X,)), = T,

2b
where
= 1 2 2 o K
Ry=— h\ \/b” = (b" - a”)sn*| — @] |cos(mb)da,
w 0 o
m=0,1,...

are the (cosine) Fourier coefficients of the smooth function

h(6). They can be well approximated by means of the dis-
crete cosine Fourier transform and can be efficiently com-
puted by using a DCT algorithm based on FFT 20

For determining the coefficients Ef:,)w consider the ex-
pression

R = (R x), Ty(X )0 T,

J f T,,(X ) T,(X )h(x,x"Ydxdx'
VO - D) (- VB - s (x2 - D)

By using the change of variables

K’
x= \/bz— (»*- az)sn2<— )
T
K’
x' = \/bz- (»*- az)snz(——0’),
T

there results

12 27 (2w
= N O

K
\/b2 — (- az)snz(—— 0’)) - cos(m@)cos(n6')dode’ .
T

Thus, in the case the functlon h(x,y) is given by its analyti-
cal form, the coefficients hm can be computed by means of
a 2D discrete cosine {Fourier) transform.

In order to evaluate the contribution to K( %) coefficients
of the integral terms in the expression of the kernel K@
X(x,x") we introduce the functions
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So(kot) = {sin(kgtx), T,(X,)),
which can be computed as

Sa(kot)

K/ 27 K’
= — sin[kot \/b2 ~(b*- az)sn2(—¢9)Jcos(n0)d0
2mb ), T

by using a DCT algorithm. Now due to the special form of
the integrals a parallel algorithm for computing simulta-
neously all of the integrals corresponding to all values O
sn<N, O0sm=n by certain quadrature formulas may be
employed. Consider, as an example, the Cauchy principal-
value integral

0 — P ' g Sin(kotx)Tm(Xo)
= J:z J; dxdx fo \/(bz—xz)(xz— a?)
sin(kotx")T(X))  dt

\/(bz _xlz)(xrz _ a2) t2_—1

We can write

- fS”(kOt)SO (ko) | 2

Ty = E—J_‘So(ko 1))Se(kot),
j=1 j

Wit being the weights and, respectively, the nodes of an
even (2p) Gauss-Legendre quadrature formula.

By the same method the moment coefficients M,, may be
obtained

2K! a
M,= b f xdx K(")

X (x, \/b2 - (b*- az)sn2< K;’ >)cos(n 0)de.

For the explicit terms in the kernel K@ the calculation is
straightforward. For the terms containing integrals take as an
example the same integral as before. Thus,

IM=—J df T(X))dx'
1 X \/(b2 /2)(x12_a2)

in(koxt)sin(kgx' ¢t 4
Xf sin(kyxt)sin(kyx )dt:—
2 - 0
sin(kqat koat) \ S (kot
Xf ( lﬂ(zoa)_aCOS( oa)) ,5( O)dt
0 k, kot -1

The resulting integral can also be computed by means of an
even Gauss-Legendre quadrature formula.

B. The “even” case

A similar analysis can be performed for the “even” prob-
lem. In this case only the final formulas shall be given. Thus,
for a smooth function A(x) along the interval (a,b)
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b 2xh(x)T,(X,)dx

((x), T(Xe))e = DD

ml [ a+b? b -4d°
:E— h > + 3 cos 6
T

Xcos(mb)do

is obtained. Hence,

2
ar ~
gy = (5) -

where };m are the cosines Fourier coefficients of the even,
2mr-periodic function

ﬁ(g)_h<\/32+b2+b2-a2 0>
= 2 2 COs .

Also, for the coefficients
RS, = ((h(x,x"), To(X D)o Tl X))

_ J ’ fb 4xx" T X )T, (X, )R(x,x")dxdx’
P BN e Yo TR Y e

there results

@ 1 2o 2w a2+ b2 b2___ a2
bl = — h + cos 6,
40 Jo 2 2

2+b2 b2__ 2
\/;2 + 2a cos 8] - cos(m@)cos(nt’)dodd’ ,

a formula which can be used in the case an analytical expres-
sion is given for the function h(x,x’) by means of a 2D
cosine Fourier transform.

The terms containing integrals are defined as

S¢(kot) = (sin(korx), T,(X,)).

0 2

. Hence,
b b 2 s
4 kotx) T, (X,
o [ [ e [ 42 00
aJa o V-2 -a?)
sin(ktx ) T(X,)  dt
\/(bZ_x/Z)(XIZ__a2) 21

2 ge e 2p
Se(kot)S;,(kot) w,
=f (;2_ 1 Cdt=2, tg_jlsfz(kofj)sfn(kol‘j)-
0 =15
Finally
4 a 2w
Fo=— f dx| K9
TJo 0

2 bZ bZ_ 2
X(x,\/;; + 20 cos 8 cos(n@)dd

for the explicit part of the kernel and

766  J. Acoust. Soc. Am., Vol. 119, No. 2, February 2006

1 2m ‘ aZ + b2 b2 _ a2
=—2— sin| kot + 3 cos 8 {cos(nd)dé.

P f”d fb 2x' T (X!)dx'
= - X
R A PP

y J 2 sin(koxt)sin(kgx'1) e 2

o] t2—1 v
2 (1 = cos(kgat) ) St (kot)
Xf 0 ( kot £-1 at

for the part containing integrals which cannot be obtained in
closed form. The last integrals can be computed (for all the
values of n) by using a vectorized form of an even Gauss-
Legendre quadrature formula.

VIl. NUMERICAL RESULTS

The parameters in the present problem are: the angles
;. @; giving the incident-wave direction, a, the diaphragm’s
half length, b-a the slit’s width, the depth h, and frequency
f=w/2. We consider a=1 such that all the lengths are nor-
malized with respect to half-diaphragm length.

For determining the pressure on the diaphragm we have
to solve firstly the systems (34) and (39) for the coefficients
Afzo) and Aff). As the representation formulas (32) and (37)
assure the proper behavior of the pressure at the points a and
b the infinite systems have good convergence properties,
such that only a few terms have to be retained in the infinite
systems. Once the parameters Af:’) and Aff) are determined,
the moment M and the force F are provided by formulas (43)
and (42), respectively.

The numerical values M(6;, @;)} obtained by solving the
problem satisfy the relationship

M6, ;) = M cos ¢; sin 6;,
where
M = M(7/2,0).

We denote by Mo and Fo the moment and the force
corresponding to the incoming and reflected wave when b
=g (the solution of the problem without slits) and have plot-
ted in Fig. 4 the value of the ratio M/Mo for certain values
of h>0 and b>>1. Also, in Fig. 5 is plotted the amplitude of

M/Mo .
0.7

064 e
054
044 e

034

FIG. 4. Variation of the moment ratio M/M, with b and % at a frequency of
10 kHz.
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0.6
054
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0.
1.15

0.5

10

FIG. 5. Variation of the modulus of force ratio F/F, with b and % at a
frequency of 10 kHz.

the ratio F/Fo. It is to be noticed that in contrast to the
moment, the force F has a phase delay plotted in Fig. 6.

Figures 4 and 5 point out that the interesting case from
the design point of view, characterized by larger values of
moment and force, is that of values of b closer to 1 and
larger values of h. All the calculations were carried out for
the frequency value f=10 kHz.

Some physical explanations of these results can be pro-
vided by analyzing the diffraction of a plane wave by a grat-
ing. This problem, in the case of a simplified one-mode ap-
proximation, has an explicit analytical solution'"*? and a plot
of the transmission coefficient is given in Ref. 13, Fig. 2(b).
It is clear that the transmission coefficient is significantly
lower than unity only in the case of very narrow slits. For
wider slits, an important part of the incoming plane wave is
passing through slits in the lower half-plane, equalizing the
pressure on the two faces of the diaphragm. As the dia-
pbragm is driven mainly by the pressure difference on the
two faces of the diaphragm (or by the net moment due to the
pressure difference) it is clear that the device will work better
in the case of very narrow slits. In the case of the finite depth
of the backing cavity, the lower wall of the backchamber will
give a reflection of the waves which have penetrated the slits

arg(F/Fo)

0.5~

-1.54-

1.05

FIG. 6. Variation of the phase of force ratio F/F, with b and A at a fre-
quency of 10 kHz.
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Modulus of Force Ratio vs Frequency
(h=0.9, a=1.000, b=1.001)

o ¢
=)
R

0 ] 1|0 ' 15l o 20
Frequency [kHz]

FIG. 7. Increase of the modulus of the force ratio with frequency (a
=1.0 mm, b=1.001 mm, ~2=0.9 mm, §,=0).

giving an additional increase of the pressure on the lower
face of the diaphragm and decreasing the pressure difference
between the two faces.

Next, we investigate the dependence of moment and
force upon frequency. These functions are plotted in Figs. 7
and 8. The normalized force amplitude |F/Fo| is increasing
nearly linearly with frequency while the ratio M/Mo is prac-
tically independent of frequency.

The analysis performed in this paper considers a simpli-
fied model for the directional microphone. There are many
aspects of the analysis and design to consider in the devel-
opment of the device. This paper focusses only on the ap-
plied moments and forces due to sound. Finally, we assumed
in this work that the diaphragm is a rigid plate. The elasticity

Moment Ratio vs Frequency
{h=0.9, a=1.000, b=1.001)

0.6130+

0.61254

0.6120

MM,

0.6115

0.6110+

0.6105 - ———— . r
0 5 10 15 20
Frequency [kHz]

FIG. 8. Variation of the resultant moment of pressure with frequency (a
=1.0 mm, b=1.001 mm, £=0.9 mm, §,=90°).
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of the real diaphragms will give supplementary problems
which can be addressed only in a more compieted computa-
tional model.
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